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Abstract

Time finite element analysis (TFEA) is used to determine the accuracy, stability, and limit cycle behavior
of the milling process. Predictions are compared to traditional Euler simulation and experiments. The
TFEA method forms an approximate solution by dividing the time in the cut into a finite number of
elements. The approximate solution is then matched with the exact solution for free vibration to obtain a
discrete linear map. Stability is then determined from the characteristic multipliers of the map. Map fixed
points correspond to stable periodic solutions which are used to evaluate surface location error.
Bifurcations and limit cycle behavior are predicted from a non-linear TFEA formulation. Experimental
cutting tests are used to confirm theoretical predictions.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Relative vibrations between a cutting tool and workpiece result in a machining process with
surface location errors and time-varying chip loads. Since cutting forces are approximately
proportional to the uncut chip area [1–4], chip load variations cause dynamic cutting forces which
may excite the structural modes of a machine–tool system resulting in unstable vibrations known
as chatter. Unless avoided, chatter vibrations may cause large dynamic loads on the machine
spindle and table structure, damage to the cutting tool, and a poor surface finish [1,5]. Therefore,
it is desirable to avoid chatter vibrations. Even in the absence of chatter, the accurate placement of
a machined surface is complicated by vibrations and surface location errors result when the
machined surface does not lie ‘‘exactly’’ at the commanded location.
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The explanation for machine–tool chatter was first given by Tlusty [6] and Tobias [7] as
‘‘regeneration of waviness’’. The resulting mathematical equations are in the form of delay-
differential equations. Stability predictions have been made in the case of continuous cutting by
several authors [1,7,8]. These solutions are only approximate for the case of milling because the
direction of the cutting force changes with tool rotation and cutting is interrupted as each tooth
enters and leaves the workpiece (see Fig. 1). While numerical simulation can be used to capture
the interrupted nature of the milling process (see Ref. [9]), the exploration of parameter space by
time domain simulation is inefficient. The desire for a more efficient analytical method has led to
development of several alternative methods for the prediction of stability properties in milling,
e.g., Refs. [10–13].
Analytical investigations have predicted the occurrence of new bifurcation phenomena in

interrupted cutting processes. In addition to Hopf bifurcations, period doubling bifurcations have
been analytically predicted by Davies et al. [11], Insperger and St!ep!an [14], Corpus and Endres
[15], Bayly et al. [16] and confirmed experimentally by Davies et al. [11], Bayly et al. [16], and
Mann et al. [17].
In this paper, a new approach is described to predict stability, surface location error, and the

limit cycle behavior in milling. The solution technique, called time finite element analysis or
(TFEA), forms an approximate solution by dividing the time in the cut into a finite number of
elements. The approximate solution is then matched with the exact solution for free vibration to
obtain a discrete linear map. The characteristic multipliers or eigenvalues of the map are used to
determine the stability of the system. Fixed points of the dynamic map are used to predict the
steady state surface location errors in stable cutting processes that result from tool or workpiece
vibrations.
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Fig. 1. Two-degree-of-freedom milling process. A single mode in each direction is considered. Equations are analogous

if the tool is assumed rigid and the workpiece is flexible.
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For an unstable cutting process, relative vibrations build until the tool jumps out of the cut.
When the tool continues to reenter and jump out of the cut, the result is a limit cycle. A recursive
mapping process, called non-linear TFEA, is introduced here to capture the non-linearity of the
tool jumping out of the cut.
The stability, accuracy, and limit cycle predictions from the TFEA method are compared

to experimental cutting tests and Euler simulation. Strong agreement is obtained between
the both numerical methods and experiments. In addition, the computation times required
for TFEA predictions is shown to be significantly less than computational times for Euler
simulation.

2. Mechanical model

A schematic diagram of a two-degree-of-freedom milling process is shown in Fig. 1. A
compliant tool or structure with a single mode of vibration in two uncoupled and orthogonal
directions will result in the following equation of motion:

mx 0

0 my

" #
.xðtÞ

.yðtÞ

" #
þ

cx 0

0 cy

" #
’xðtÞ

’yðtÞ

" #
þ

kx 0

0 ky

" #
xðtÞ

yðtÞ

" #
¼

FxðtÞ

FyðtÞ

" #
; ð1Þ

where the terms mx;y; cx;y; kx;y; and Fx;y are the modal mass, damping, spring stiffness, and cutting
forces in the flexible directions of the system. The x and y cutting force components on the pth
tooth are given by

FxpðtÞ ¼ �gpðtÞ½FtpðtÞ cos ypðtÞ þ FnpðtÞ sin ypðtÞ�; ð2Þ

FypðtÞ ¼ gpðtÞ½FtpðtÞ sin ypðtÞ � FnpðtÞ cos ypðtÞ�; ð3Þ

where gpðtÞ acts as a switching function, it is equal to one if the pth tooth is active and zero if it is
not cutting [10,12]. The tangential and normal cutting force components, FtpðtÞ and FnpðtÞ;
respectively, are considered to be the product of linearized cutting coefficients Kt and Kn; the
nominal depth of cut b; and the instantaneous chip width wpðtÞ:

FtpðtÞ ¼ KtbwpðtÞ; FnpðtÞ ¼ KnbwpðtÞ; ð4; 5Þ

where wpðtÞ depends upon the feed per tooth, h; the cutter rotation angle ypðtÞ; and regeneration in
the compliant structure directions:

wpðtÞ ¼ h sin ypðtÞ þ ½xðtÞ � xðt � tÞ�sin ypðtÞ þ ½yðtÞ � yðt � tÞ�cos ypðtÞ: ð6Þ

Here, h sin ypðtÞ is the circular tool path approximation [1,5], t ¼ 60=NO ½s� is the tooth pass
period, O is the spindle speed given in r.p.m. and N is the total number of cutting teeth. The
angular position of the pth tooth for a cutter with evenly spaced teeth is ypðtÞ ¼ ð2pO=60Þt þ
p2p=N:
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The total cutting force equations are found by summing the forces on each cutting tooth and
substituting Eqs. (4)–(6) into Eqs. (2) and (3):

Fx

Fy

" #
¼
XN

p¼1

gpðtÞb h
�Ktsc � Kns2

Kts
2 � Knsc

" # 

þ
�Ktsc � Kns2 �Ktc

2 � Knsc

Kts
2 � Knsc Ktsc � Knc2

" #
xðtÞ � xðt � tÞ

yðtÞ � yðt � tÞ

" #!
; ð7Þ

where s ¼ sin ypðtÞ and c ¼ cos ypðtÞ: A more compact form for the equation of motion and is
realized by defining the substitutions

KcðtÞ ¼
XN

p¼1

gpðtÞ
�Ktsc � Kns2 �Ktc

2 � Knsc

Kts
2 � Knsc Ktsc � Knc2

" #
; ð8Þ

f 0ðtÞ ¼
XN

p¼1

gpðtÞh
�Ktsc � Kns2

Kts
2 � Knsc

" #
; ð9Þ

and rewriting Eq. (1) as

M .XðtÞ þ C ’XðtÞ þ KXðtÞ ¼ KcðtÞb½XðtÞ � Xðt � tÞ� þ f 0ðtÞb; ð10Þ

where XðtÞ ¼ ½xðtÞ yðtÞ�? is the two-element position vector and M;C; and K are the 2� 2 mass,
damping, and stiffness matrices of Eq. (1). When the structure is only compliant in a single
direction, Eq. (10) can be modified by eliminating the corresponding rows and columns of the
opposing direction. For instance, a structure compliant only in the x direction would have the
following equation of motion:

mx .xðtÞ þ cx ’xðtÞ þ kxxðtÞ ¼ �KsxðtÞb½xðtÞ � xðt � tÞ� � f0xðtÞb; ð11Þ

where the x direction terms of KcðyðtÞÞ and f 0ðyðtÞÞ have now been written as

KsxðtÞ ¼
XN

p¼1

gpðtÞ½Kt cos ypðtÞ þ Kn sin ypðtÞ�sin ypðtÞ; ð12Þ

f0xðtÞ ¼
XN

p¼1

gpðtÞ½Kt cos ypðtÞ þ Kn sin ypðtÞ�h sin ypðtÞ: ð13Þ

The terms KsxðtÞ and f0xðtÞ provide a periodic forcing term which would result in a periodic
solution in the absence of the perturbations given by the time-delayed relative displacement terms
of Eq. (11). Perturbation growth reflects the loss of stability, while perturbation decay
characterizes an asymptotically stable cutting process.

3. TFEA

The dynamic behavior of the milling process is dependent upon a time-delay differential
equation which does not have a closed form solution. Therefore, an approximate solution is
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sought to understand the behavior of the system. One such approximation technique used
for dynamic systems is TFEA [18]. This method was first applied to an interrupted turning
process by Halley [19] and Bayly et al. [20]. The authors matched an approximation for the
cutting motion obtained using a single finite element to the exact solution for free vibration
to obtain a discrete linear map. The characteristic multipliers or eigenvalues of the map were
used to determine the stability of the system. Comparisons with experimental tests showed
strong agreement for small fractions of the spindle period in the cut ðrÞ: However,
diminished correlations were shown for larger values of r: This was corrected in Bayly
et al. [16] by dividing the time in the cut into multiple finite elements in time. The multiple
element turning solution was adapted to model single-degree-of-freedom (SDOF) milling
systems in Mann et al. [17] and multiple degree of freedom systems (MDOF) in
Bayly et al. [21]. The analysis presented in this article extends the previous stability SDOF
work of Mann et al. [17] to the prediction of surface location error and the limit cycle behavior
associated with the non-linearity of the tool exiting the cut during chatter vibrations. The
formulation of the dynamic map for the MDOF system (Eq. (10)) closely follows the
discretization procedure outlined in Bayly et al. [21], but has been presented here for
completeness.

3.1. Free vibration

When the tool is not in contact with the workpiece, the system is governed by the equation for
free vibration

M .XðtÞ þ C ’XðtÞ þ KXðtÞ ¼ 0: ð14Þ

This equation can be rearranged into state-space form

’XðtÞ
.XðtÞ

" #
¼

0 I

�M�1K �M�1C

" #
XðtÞ
’XðtÞ

" #
; ð15Þ

where the 2� 2 state matrix in Eq. (15) will be denoted by G: If we let t ¼ tc as the tool leaves the
material and tf be the duration of free vibration, a state transition matrix ðU ¼ eGtf Þ can be
obtained that relates the state of the tool at the beginning of free vibration to the state of the tool
at the end of free vibrations.
This equation is true for every period, such that for all n:

XðntÞ
’XðntÞ

" #
¼ U

Xððn � 1Þtþ tcÞ
’Xððn � 1Þtþ tcÞ

" #
: ð16Þ

3.2. Vibration during cutting

When the tool is in the cut, its motion is governed by a time-delayed differential equation. Since
this equation does not have a closed form solution, an approximate solution for the tool
displacement is assumed for the jth element of the nth tooth passage as a linear combination of
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polynomials (see Ref. [22])

XðtÞ ¼
X4
i¼1

an
jifiðsjðtÞÞ: ð17Þ

Here, sjðtÞ ¼ t � nt�
Pj�1

k¼1 tk is the ‘‘local’’ time within the jth element of the nth period, the
length of the kth element is tk and the trial functions fiðsjðtÞÞ are the cubic Hermite polynomials.
On the jth element these functions are

f1ðsjÞ ¼ 1� 3
sj

tj

� �2

þ2
sj

tj

� �3

; ð18aÞ

f2ðsjÞ ¼ tj

sj

tj

� �
� 2

sj

tj

� �2

þ
sj

tj

� �3
" #

; ð18bÞ

f3ðsjÞ ¼ 3
sj

tj

� �2

�2
sj

tj

� �3

; ð18cÞ

f4ðsjÞ ¼ tj �
sj

tj

� �2

þ
sj

tj

� �3
" #

: ð18dÞ

These functions are particularly useful because they allow the coefficients of the assumed solution
to be found by matching the initial and final velocities for each element.
Substitution of the assumed solution (Eq. (17)) into the equation of motion (Eq. (11)) leads to a

non-zero error. The error from the assumed solution is ‘‘weighted’’ by multiplying by a set of test
functions and setting the integral of the weighted error to zero to obtain two equations per
element [16,19,20,22,23]. The test functions are chosen to be the simplest possible functions:
c1ðsjÞ ¼ 1 (constant) and c2ðsjÞ ¼ sj=tj � 1=2 (linear). The integral is taken over the time for each
element, tj ¼ tc=E; thereby dividing the time in the cut tc into E elements. The resulting two
equations areZ tj

0

M
X4
i¼1

an
ji
.fiðsjÞcpðsjÞ

 !
þ C

X4
i¼1

an
ji
’fiðsjÞcpðsjÞ

 !"

þ ðK� bKcðsjÞÞ
X4
i¼1

an
jifiðsjÞcpðsjÞ

 !

þ bKcðsjÞ
X4
i¼1

an�1
ji fiðsjÞcpðsjÞ

 !
� bf 0ðsjÞcpðsjÞ

#
dsj ¼ 0; p ¼ 1; 2: ð19Þ

Here p is used to identify the test function and the terms KcðsjÞ and f 0ðsjÞ have been used in place
of the previously defined KcðtÞ and f 0ðtÞ to explicitly show dependence on the local time.
The displacement and velocity at tool entry into the cut are specified by the coefficients

of the first two basis functions on the first element: an
11 and an

12: The relationship between
the initial and final conditions during free vibration can be rewritten in terms of the
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coefficients as

a11

a12

 !n

¼ U
aE3

aE4

 !n�1

; ð20Þ

where E is the total number of finite elements in the cut. For the remainder of the elements, a
continuity constraint is imposed to set the position and velocity at the end of one element are
equal to the position and velocity at the beginning of the next element.
Eqs. (19) and (20) can be arranged into a global matrix relating the coefficients of the assumed

solution in terms of the coefficients of the previous tooth passage. The following expression is for
the case when the number of elements is E ¼ 3:

I 0 0 0

N1
1 N1

2 0 0

0 N2
1 N2

2 0

0 0 N3
1 N3

2

2
66664

3
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¼

0 0 0 F
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3
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777777777777775
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þ

0

0

C1

C2

C1
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2
666666666666664

3
777777777777775

; ð21Þ

where the sub-matrices and elements of the sub-matrices for the jth element are

N j
1 ¼

N
j
11 N

j
12

N
j
21 N

j
22

" #
; N j

2 ¼
N

j
13 N

j
14

N
j
23 N

j
24

" #
; ð22Þ
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j
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P
j
11 P

j
12

P
j
21 P

j
22

" #
; P

j
2 ¼

P
j
13 P

j
14

P
j
23 P

j
24

" #
; ð23Þ

N
j
pi ¼

Z tj

0

½M .fiðsjÞ þ C ’fiðsjÞ þ ðK� bKcðsjÞÞfiðsjÞ�cpðsjÞ dsj; ð24Þ

P
j

pi ¼
Z tj

0

bKcðsjÞfiðsjÞcpðsjÞ dsj; ð25Þ

Cj
p ¼

Z tj

0

bf 0ðsjÞcp dsj: ð26Þ

Eq. (21) describes a discrete dynamical system, or map, that can be written as

Aan ¼ Ban�1 þ C ; ð27Þ

or

an ¼ Qan�1 þ D: ð28Þ
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3.3. Stability prediction from dynamic map characteristic multipliers

The eigenvalues of the transition matrix Q ¼ A�1B are called characteristic multipliers (CMs)
and take on a discrete mapping analogy to the characteristic exponents that govern stability for
continuous systems (see Ref. [24]). The condition for stability is that the magnitudes of the CMs
must be in a modulus of less than one for a given spindle speed ðOÞ and depth of cut ðbÞ for the
milling process to be asymptotically stable. Fig. 2 shows the boundaries between stable and
unstable cutting as a function of spindle speed and depth of cut. Two distinct types of instability
are illustrated by CM trajectories in the complex plane: (1) a flip bifurcation or period doubling
phenomena occurs when a negative real CM passes through the unit circle; (2) a Hopf bifurcation
occurs when a complex CM obtains a magnitude greater than one. These routes to instability are
illustrated in the bottom graphs of Fig. 2 with the corresponding speed and depth of cut points
shown in the top stability chart.
Since TFEA is a numerical technique for approximating the dynamic behavior of a system, it is

important to consider the numerical solution convergence. A thorough discussion of various
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Fig. 2. Stability predictions are made from characteristic multiplier magnitudes; an unstable parameter combination

will penetrate the unit circle in the complex plane: (a) up-milling stability predictions; and (b) characteristic multiplier

trajectories for a Hopf bifurcation (O ¼ 3101 r:p:m:; b ¼ 0–1:9 mm); and (c) characteristic multiplier trajectories for a

flip bifurcation (O ¼ 3603–3874 r:p:m:; b ¼ 1:5 mm). Structure assumed compliant only in the x direction with dynamic

and cutting coefficient parameters from Table 1. Computational time of 3:5 min with E ¼ 3:
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problem formulations, choice of trial functions, and numerical convergence was demonstrated in
Peters et al. [22,25]. Bayly et al. [16] demonstrated convergence for interrupted cutting by simply
increasing the number of temporal finite elements until stability boundaries no longer changed.
For the figures presented in this article, the solution convergence was checked and the number of
elements ðEÞ will be included in the figure captions.

3.4. Surface location error from map fixed points

A surface location error results when the machined surface does not lie ‘‘exactly’’ at the
commanded location. Several sources of error such as tool or workpiece vibrations, imperfect
spindle motions, thermal errors, controller errors, and friction in the machine drives all contribute
to the total error [1,4]. The goal of this section is to present a prediction method for the
contribution of tool or workpiece vibrations to steady state error. This is achieved by formulating
a solution that accounts for changing process parameters such as spindle speed and depth of cut to
illustrate their effects on the surface location error.
The TFEA method discretizes the continuous system equations to form the dynamic map

shown in Eq. (28). The coefficient vector an identifies the velocity and displacement at the
beginning and end of each element. Surface location error is given by the displacement coefficient
value when the cutting tooth is normal to the surface. This occurs at cutter tooth entry into the cut
for up-milling and cutter exit for down-milling.
Stable milling processes have periodic cutting forces and periodic solutions. The steady state

coefficients are found from the fixed points ða�n Þ of the dynamic map:

an ¼ an�1 ¼ a�n : ð29Þ

Substitution of Eq. (29) into Eq. (28) gives the fixed point map solution or steady state coefficient
vector

a�n ¼ ðI�QÞ�1D: ð30Þ

Since Q and D can be computed exactly for each spindle speed and depth of cut, the fixed point
displacement solution can be found and used to specify surface location error as a function of
machining process parameters.

3.5. Non-linear TFEA for limit cycle prediction

Unstable cutting processes produce large cutting forces as relative vibrations between the
cutting tool and workpiece build. Both cutting forces and vibrations continue to grow until the
tool jumps out of the cut. As the tool jumps out of the cut, the cutting forces become zero and free
vibrations occur until the tool reenters the cut. This leads to a limit cycle when the tool continues
to re-enter and jump out of the cut. Since the non-linearity associated with the tool jumping out of
the cut is not accounted for in the fixed point solution, a modified solution method called non-
linear TFEA is presented in this section to predict the milling process limit cycle behavior. This
highlights the important aspect that surface location error predictions should only be used for
stable cutting processes.
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The non-linear TFEA procedure iterates the dynamic map (Eq. (28)) to obtain the current
coefficient vector ðanÞ from the previous tooth passage coefficients ðan�1Þ: During each tooth
passage, the radial chip width ðwpÞ is checked at the beginning and end of each element with
Eq. (6), where XðtÞ is equal to the displacement coefficients of an: If a negative wp occurs in the jth
element, the tool has jumped out of the cut. The cutting forces are then set to zero by changing
KcðsjÞ and f 0ðsjÞ to zero in Eqs. (24)–(26) and updating the rows of the global matrix (Eq. (21))
corresponding to the j þ 1 element. In addition, the effect of the tool jumping out of the cut is
captured in the following revolution by correcting the feed in Eq. (26) to form a new D:

4. Euler simulation

A simple Euler time marching scheme is introduced here for comparison purposes with the
TFEA method. Euler simulation was chosen because it is a simple, but proven method for
simulating the behavior of the milling process [1,4,9,26]. Here the non-linearity encountered
during chatter vibrations is incorporated by setting the cutting forces to zero as the tool jumps out
of the cut and adjusting the radial chip width in the following tooth passage [1,26,27]. Since direct
stability predictions from the Euler simulation equations is not possible, a method for quantifying
an unstable cutting process must be adopted to analyze the results of the time marching
algorithm. One such alternative is to analyze the statistical variance ðs2Þ of the 1/tooth
displacements ðxnÞ as discussed by Schmitz [28,29]

s2 ¼
PS

n¼1ðxn � %xnÞ
2

S � 1
; ð31Þ

where %xn ¼
PS

n¼1xn=S and S is the number of 1/tooth displacement samples. Stability predictions
using this method are shown in Fig. 3. The variance was taken over the last 30 of a total of 150
simulated cutter revolutions. The distinction between a stable and unstable cutting process is
illustrated by a sharp increase in the variance as shown in the bottom graphs of Fig. 3 with the
corresponding speed and depth of cut points shown in the top stability diagram. The variance
corresponding to the loss of stability was estimated to be s2 ¼ 1� 10�6 ðmm2Þ: The
computational time to obtain the Euler simulation results of Fig. 3 was 400 times the TFEA
computational time for Fig. 2.

5. Comparison of numerical predictions

A fundamental concept used to characterize the behavior of a system is phase space [24,30,31].
The stroboscopic sampling of phase space, commonly called a Poincar!e section or map, can also
be used to characterize the behavior of a periodically forced system [24]. Therefore, Poincar!e
sections have been constructed for the results given in this section using 1/tooth displacement ðxnÞ
and delayed 1/tooth displacement ðxn2Þ co-ordinates.
Iteration of the dynamic map (Eq. (28)) was used to obtain the linear TFEA 1/tooth

displacements ðxnÞ and delayed 1/tooth displacements ðxn2Þ predictions of Fig. 4. The 1/tooth
displacements were taken from the coefficient vector an at each cutter entry into the cut for
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up-milling and for each cutter exit for down-milling. In comparison to the Euler simulation
predictions of Fig. 5, it is evident that linear TFEA correctly predicts an unstable cutting
processes, but it is unable to capture the limit cycle behavior during chatter vibrations.
Predictions using the non-linear TFEA method are shown in Fig. 6. A period doubling or flip

bifurcation is predicted in case A of Figs. 5 and 6. Cases B and C predict unstable Hopf
bifurcations and capture the limit cycle behavior. A stable cutting process with substantial surface
location error is shown by case D of Figs. 4–6. Although the results shown in this section illustrate
the most inefficient way to use TFEA, the computational times are still shorter than those made
with Euler simulation.

6. Experimental verification

Milling tests were performed using experimental flexures designed to be compliant in a single
direction. Each monolithic, uni-directional flexure was machined from aluminum and
instrumented with a single non-contact, eddy current displacement transducer as shown in Fig. 7.
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Fig. 3. Euler simulation stability predictions from variance of 1/tooth displacements: (a) simulation stability
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The modal mass, damping, and stiffness parameters were determined using the methods
outlined by Refs. [17,32] and are shown in Table 1. In comparison to the compliant direction of
each flexure, the values of stiffness in the perpendicular directions were more than 20 times
greater, as was the stiffness of the tool. The cutting coefficients in the tangential and normal
direction were determined from the rate of increase of cutting force as a function of chip load
during separate cutting tests on a Kistler Model 9255B rigid dynamometer (see Ref. [19]). The
displacement transducer output was anti-alias filtered and sampled (16-bit precision, 12,800
samples/s) with data acquisition hardware connected to a laptop computer. A periodic 1/tooth
pulse was obtained with the use of a laser tachometer to sense a black–white transition on the
rotating tool holder.
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6.1. Bifurcation and limit cycle tests

When the flexible direction of the structure coincided with the tool feed direction, the compliant
x-direction model of equation (11) was used. Aluminum (7075-T6) test specimens of width
6:35 mm and length 100 mm were mounted on the flexure and milled with a single flute 0.750-inch
ð19:050 mmÞ diameter end mill. Specimens were up-milled and down-milled at a constant feed of
0:2032 mm=rev and a fraction of the spindle period in the cut r ¼ 0:162:
Raw displacement measurements and 1/tooth samples for the compliant x direction flexure are

shown in cases (A, B, C, D) of Fig. 8. Tests were declared stable if the 1/tooth-sampled position
approached a steady constant value. Unstable behavior, described as period doubling or a flip
bifurcation [3,17,20], is predicted when the dominant CM of the TFEA model is negative and
real with a magnitude greater than one. Experimental evidence confirms the Euler simulation and

ARTICLE IN PRESS

-5

0

5
× 10 -4 

x n
  (

m
)

Euler Simulations

x n
2 

 (
m

)

Poincare Sections

xn

-5

0

5
× 10 -4 

x n
  (

m
)

x n
2  

(m
)

xn

-5

0

5
× 10 -4

x n
  (

m
)

x n2
  (

m
)

xn

0 50 100 150 200 250 300 350 400
-5

0

8
× 10 -4 

x n
  (

m
)

 n (rev)
5 0 8

× 10 -4 

x n
2  

(m
)

xn  (m)

A

B B

C C

D D

A

Fig. 5. Predictions of 1/tooth displacements obtained by Euler simulation for cases (A, B, C, D) of Fig. 8. Each row

contains a 1/tooth displacement plot and a Poincar!e section shown in delayed coordinates. Cases A (O ¼ 3650 r:p:m:;
b ¼ 2:3 mm) and B (O ¼ 3300 r:p:m:; b ¼ 0:8 mm) are up-milling examples of flip and Hopf bifurcations, respectively.

Cases C (O ¼ 3600 r:p:m:; b ¼ 2:1 mm) and D (O ¼ 4350 r:p:m:; b ¼ 3:0 mm) are down-milling predictions for an

unstable Hopf bifurcation and a stable cutting process with substantial surface location error. Structure assumed

compliant only in the x direction with dynamic and cutting coefficient parameters from Table 1. Computational time of

45 s=case using 400 steps/t:

B.P. Mann et al. / Journal of Sound and Vibration 277 (2004) 31–48 43



non-linear TFEA predictions where chatter is a subharmonic of order 2 as shown in case A of
Figs. 5–8. Unstable behavior predicted by complex CMs with a magnitude greater than one in the
TFEA method corresponds to a Hopf bifurcation [8,16,17,24]. In such cases, chatter vibrations
are unsynchronized with tooth passage as shown in examples B and C of Figs. 5–8. A stable
cutting process with substantial surface location error is shown by case D. The agreement between
predictions and experiment for case D of Figs. 5–8 show even a stable cutting process can have
errors due to the cutting process dynamics.

6.2. Surface location error tests

Surface location error measurements were performed with the compliant structure direction
oriented perpendicular to the tool feed. The corresponding model is given from modifying
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Eq. (10) to include only the y direction. A single flute 0.750-inch ð19:050 mmÞ diameter end mill
was used to up-mill both sides of aluminum (7050-T7451) test specimens at a fraction of the
spindle period in the cut r ¼ 0:125: Each test specimen, of length 100 mm and width 12:7 mm; was
machined at a different spindle speed while holding the feed and depth of cut at constant values of
h ¼ 0:2032 mm=rev and b ¼ 1:5 mm for all cutting tests.
Surface location error measurements were taken via two methods: (1) an eddy current

displacement transducer was used along with a timing pulse from a laser tachometer, (2) a
calibrated PG1000 microscope was used to visually locate the surface and the average of five
measurements was used for the final result. Experimental results from each measurement method
have been overlayed onto fixed point TFEA surface location error predictions in Fig. 9. The
corresponding spindle speed and depth of cut points for each measurement are shown in the top
stability chart. It is clearly evident that the results from each measurement technique show
qualitative agreement with predictions.

ARTICLE IN PRESS

Fig. 7. Schematic of compliant x direction flexure and measurement system.

Table 1

Estimated system parameters

Symbol x-Direction system y-Direction system

m 2:5729 kga 0:692 kg
c 5:8911 N s=m 5:7729 N s=m
k 2:18� 106 N=m 3:01� 106 N=m
Kt 5:5� 108 N=m2 5:36� 108 N=m2

Kn 2:0� 108 N=m2 1:87� 108 N=m2

aCompliant x direction flexure was mass loaded.
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7. Summary and conclusions

Time finite element analysis is used to analyze the accuracy, stability, and limit cycle behavior of
milling. Results are compared to Euler simulation which obtains the acceleration, velocity, and
displacement at each time step. Displacement information corresponding to when the cutting
teeth are normal to the workpiece surface can be used to predict surface location error. Since
direct stability predictions from the time-marching equations is not possible, an additional
technique has been applied to quantify an unstable cutting process. Here we used the variance of
simulation 1/tooth displacements to find the transition between stable and unstable cutting.
The TFEA method forms an approximate solution by dividing the time in the cut into a finite

number of elements. The approximate solution is then matched with the exact solution for free
vibration to obtain a discrete linear map. The formulated dynamic map is then used in three
different ways: (1) stability prediction from the magnitude of map characteristic multipliers, (2)
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B.P. Mann et al. / Journal of Sound and Vibration 277 (2004) 31–4846



prediction of steady state surface location error from map fixed points, (3) iteration of the map to
predict 1/tooth displacements for stable and unstable cutting processes. Surface location error and
stability predictions are shown to be much more efficient than the Euler simulation and iteration
of the map is shown to be only slightly more efficient.
TFEA surface location error, stability, and limit cycle predictions show strong agreement with

both Euler simulations and experimental results. The main advantage of the TFEA method is
shown to be a dramatic increase in the compuational efficiency for stability and surface location
error predictions.
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